f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8juc

NAG C Library Function Document

nag_zpteqr (f08juc)

1 Purpose

nag_zpteqr (fO8juc) computes all the eigenvalues, and optionally all the eigenvectors, of a complex
Hermitian positive-definite matrix which has been reduced to tridiagonal form.

2 Specification

void nag_zpteqr (Nag_OrderType order, Nag_ComputeZType compz, Integer n,
double d[], double e[], Complex z[], Integer pdz, NagError *fail)

3 Description

nag_zpteqr (fO8juc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
positive-definite tridiagonal matrix 7. In other words, it can compute the spectral factorization of 1" as

T =ZAZ",

where A is a diagonal matrix whose diagonal elements are the eigenvalues A;, and Z is the orthogonal
matrix whose columns are the eigenvectors z;. Thus

TZZ:ATZZ? 7::172,...,n.

The function stores the real orthogonal matrix Z in a complex array, so that it may be used to compute all
the eigenvalues and eigenvectors of a complex Hermitian positive-definite matrix A which has been
reduced to tridiagonal form 7"

A =QTQ", where Q is unitary
H
= (Q2)AQ2)".
In this case, the matrix () must be formed explicitly and passed to nag_zpteqr (f08juc), which is called

with compz = Nag_UpdateZ. The functions which must be called to perform the reduction to tridiagonal
form and form @ are:

full matrix nag_zhetrd (f08fsc) + nag_zungtr (f08ftc)
full matrix, packed storage nag zhptrd (f08gsc) + nag zupgtr (f08gtc)
band matrix nag_zhbtrd (fO8hsc) with vect = Nag_FormQ.

nag_zpteqr (fO8juc) first factorizes T as LDL"” where L is unit lower bidiagonal and D is diagonal. It

forms the bidiagonal matrix B = LD%, and then calls nag_zbdsqr (f08msc) to compute the singular values
of B which are the same as the eigenvalues of 7. The method used by the function allows high relative
accuracy to be achieved in the small eigenvalues of 7. The eigenvectors are normalized so that ||z;||, = 1,
but are determined only to within a complex factor of absolute value 1.

4 References

Barlow J and Demmel ] W (1990) Computing accurate eigensystems of scaled diagonally dominant
matrices SIAM J. Numer. Anal. 27 762-791

S  Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
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order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: compz — Nag_ComputeZType Input
On entry: indicates whether the eigenvectors are to be computed as follows:

if compz = Nag NotZ, only the eigenvalues are computed (and the array z is not
referenced);

if compz = Nag_InitZ, the eigenvalues and eigenvectors of 7" are computed (and the array z
is initialised by the routine);

if compz = Nag_UpdateZ, the eigenvalues and eigenvectors of A are computed (and the
array z must contain the matrix () on entry).

Constraint: compz = Nag_NotZ, Nag_UpdateZ or Nag_InitZ.

3: n — Integer Input
On entry: n, the order of the matrix 7.

Constraint: n > 0.

4: d[dim] — double Input/Output
Note: the dimension, dim, of the array d must be at least max(1,n).
On entry: the diagonal elements of the tridiagonal matrix 7'
On exit: the n eigenvalues in descending order, unless fail > 0, in which case the array is
overwritten.

5: e[dim] — double Input/Output
Note: the dimension, dim, of the array e must be at least max(1,n — 1).
On entry: the off-diagonal elements of the tridiagonal matrix 7.

On exit: the array is overwritten.

6: z[dim] — Complex Input/Output
Note: the dimension, dim, of the array z must be at least
max(1,pdz X n) when compz = Nag UpdateZ or Nag InitZ;
1 when compz = Nag _NotZ.

If order = Nag_ColMajor, the (4, j)th element of the matrix Z is stored in z[(j — 1) x pdz + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in z[(i — 1) x pdz + j — 1].

On entry: if compz = Nag_UpdateZ, z must contain the unitary matrix () from the reduction to
tridiagonal form. If compz = Nag_ InitZ, z need not be set.

On exit: if compz = Nag_InitZ or Nag_UpdateZ, the n required orthonormal eigenvectors stored as
columns of z; the ith column corresponds to the ¢th eigenvalue, where ¢ = 1,2,...,n, unless
fail > 0.

z is not referenced if compz = Nag NotZ.

7: pdz — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.
Constraints:

if compz = Nag UpdateZ or Nag InitZ, pdz > max(1,n);
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if compz = Nag NotZ, pdz > 1.

8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6  Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdz = (value).
Constraint: pdz > 0.
NE_ENUM_INT 2
On entry, compz = (value), n = (value), pdz = (value).
Constraint: if compz = Nag UpdateZ or Nag InitZ, pdz > max(1,n);
if compz = Nag NotZ, pdz > 1.
NE_CONVERGENCE

The leading minor of order (value) is not positive-definite and the Cholesky factorization of 7" could
not be completed. Hence T itself is not positive-definite.

The algorithm to compute the singular values of the Cholesky factor B failed to converge; (value)
oft-diagonal elements did not converge to zero.
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7  Accuracy

The eigenvalues and eigenvectors of T' are computed to high relative accuracy which means that if they
vary widely in magnitude, then any small eigenvalues (and corresponding eigenvectors) will be computed
more accurately than, for example, with the standard QR method. However, the reduction to tridiagonal
form (prior to calling the function) may exclude the possibility of obtaining high relative accuracy in the
small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

To be more precise, let H be the tridiagonal matrix defined by H = DT D, where D is diagonal with
1

dy =t 2 and h;; =1 for all i. If X, is an exact eigenvalue of T" and J\; is the corresponding computed

(A
value, then

A = Nl < e(n)ery(H)A;

where ¢(n) is a modestly increasing function of n, € is the machine precision, and r,(H) is the condition
number of H with respect to inversion defined by: r,(H) = || H| - ||[H ']

If z; is the corresponding exact eigenvector of 7', and z; is the corresponding computed eigenvector, then
the angle 6(%;, z;) between them is bounded as follows:
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c(n)ery (H)
relgap;

IN

9(51'7 Zi)

where relgap; is the relative gap between \; and the other eigenvalues, defined by

relgap;, = minM
oA (M)

8 Further Comments

The total number of real floating-point operations is typically about 30n” if compz = Nag_NotZ and about
12n® if compz = Nag_UpdateZ or Nag_InitZ, but depends on how rapidly the algorithm converges.
When compz = Nag_NotZ, the operations are all performed in scalar mode; the additional operations to
compute the eigenvectors when compz = Nag_UpdateZ or Nag_ InitZ can be vectorized and on some
machines may be performed much faster.

The real analogue of this function is nag_dpteqr (f08jgc).

9 Example

To compute all the eigenvalues and eigenvectors of the complex Hermitian positive-definite matrix A,
where

6.02+0.000 —0.45+0.25¢ —1.30+ 1.744 1.45 — 0.667
—0.45 - 0.25¢ 291+0.00¢  0.05+1.56: —1.04+1.27¢
—1.30 — 1.74¢ 0.05 — 1.56¢ 3.29 +0.00¢ 0.14 +1.70¢

1.45+4+0.66¢ —1.04 -1.27: 0.14—-1.70: 4.18 4 0.00¢

A:

9.1 Program Text

/* nag_zpteqr (f£08juc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)

{
/* Scalars */
Integer i, j, n, pda, pdz, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType wuplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
Complex *a=0, *tau=0, *z=0;
double *d=0, #*e=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define Z(I,J) z[(J-1)*pdz + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define 7Z(I,J) z[(I-1)*pdz + J - 1]
order = Nag_RowMajor;
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#endif

INIT FAIL(fail);

fO8juc

Vprintf ("f08juc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("sx["\n] ");

Vscanf ("$1d%*[*\n] ", &n);
pda = n;

pdz = n;

tau_len = n-1;

d_len = n;
e_len = n-1;
/* Allocate memory */

if ( !(a = NAG_ALLOC(n * n, Complex)) ||
! (tau = NAG_ALLOC(tau_len, Complex)) ||
1 (z = NAG_ALLOC(n * n, Complex)) ||
1 (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_1len, double)) )
{

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read A from data file x/

Vscanf (" ' %1s ’%*[*\n] ", uplo_char);

if (*(unsigned char *)uplo_char == 'L’)
uplo = Nag_Lower;

else if (*(unsigned char #*)uplo_char ==
uplo = Nag_Upper;

else
{

Vprintf ("Unrecognised character for

exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
Vscanf (" ( %1f , %1f )", &A(1i,
¥
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= 1i; ++3)
Vscanf (" ( %1f 1f )", &A(1i,
¥
Vscanf ("sx["\n] ");
}

/* Reduce A to tridiagonal form T =
f08fsc(order, uplo, n, a, pda, 4, e,

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08fsc.\n%s\n",
exit_status = 1;
goto END;
3
/* Copy A into Z x/
if (uplo == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)

[NP3645/7]

Nag_UploType type\n");

j).re, &A(1i,3).im);

j).re, &A(i,3).im);

(Q**H) *xA*Q */

tau,

&fail);

fail.message) ;
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{
for (j = 1i; j <= n; ++3j)
{
Z(i,j).re = A(i,]).re;
Z(i,j).im = A(i,]j).im;
}
b
}
else
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= 1i; ++3)
{
Z(i,j).re = A(i,]).re;
Z(i,3).im = A(i,j).im;
}
¥
}

/* Form Q explicitly, storing the result in Z */
f08ftc(order, uplo, n, z, pdz, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08ftc.\n%s\n",
exit_status = 1;
goto END;

fail.message) ;

}

/* Calculate all the eigenvalues and eigenvectors of A *x/
f08juc(order, Nag_Updatez, n, 4, e, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08juc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Print eigenvalues and eigenvectors =*/
Vprintf (" Eigenvalues\n")
for (i 1; 1 <= n; ++1)
Vprintf ("%7.4£f%s dari-11,
Vprintf ("\n") ;
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
z, pdz, Nag_BracketForm, "%7.4f",

i%4==0 2"\n":"

")

n, n,
"Eigenvectors"

Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, O,
0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE(a);
if (tau) NAG_FREE (tau);
if (z) NAG_FREE(z);
if (d) NAG_FREE(Q);
if (e) NAG_FREE (e);

return exit_status;

}
9.2 Program Data
f08juc Example Program Data
4
r L ’
( 6.02, 0.00)
(-0.45,-0.25) ( 2.91, 0.00)
(-1.30,-1.74) ( 0.05,-1.56) ( 3.29, 0.00)
( 1.45, 0.66) (-1.04,-1.27) ( 0.14,-1.70) ( 4.18, 0.00)
SO08juc.6
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:Value of N
:Value of UPLO

:End of matrix A
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9.3 Program Results

f08juc Example Program Results

Eigenvalues
7.9995 5.9976 2.0003 0.4026

Eigenvectors

1 2 3 4
1 ( 0.7289, 0.0000) ( 0.2001, 0.4724) (-0.2133, 0.1498) ( 0.0995,-0.3573)
2 (-0.1651,-0.2067) (-0.2461, 0.3742) ( 0.7308, 0.0000) ( 0.2867,-0.3364)
3 (-0.4170,-0.1413) ( 0.4476, 0.1455) (-0.3282, 0.0471) ( 0.6890, 0.0000)
4 ( 0.1748, 0.4175) ( 0.5610, 0.0000) ( 0.5203, 0.1317) ( 0.0659, 0.4336)
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